Structure cristalline et investigation par spectrométrie de vibration IR des cyclotétraphosphates pentahydratés $M^{\parallel}K_2P_4O_{12} \cdot 5H_2O$ ($M^{\parallel} = NI$, Co)

A. JOUINI, M. SOUA, ET M. DABBABI

Laboratoire de Chimie Minérale, Département de Chimie, Faculté des Sciences et Techniques de Monastir, 5000 Monastir, Tunisia

Received July 6, 1986; in revised form October 20, 1986

To determine the reorganization occurring during the dehydration of nickel dipotassium cyclotetraphosphate heptahydrate, NiK₂P₄O₁₂ · 7H₂O (A. Jouini, M. Dabbabi, and A. Durif, J. Solid State Chem. **60**, 6 (1985)), leading to the pentahydrate, we studied the crystal structure of the corresponding isotypic cobalt salt $CoK_2P_4O_{12} \cdot 5H_2O$ because of the lack of NiK₂P₄O₁₂ · 5H₁₂O single crystals. The symmetry is monoclinic, P_{21}/c , a = 12.955(2), b = 16.294(2), c = 7.432(2) Å, $\beta = 92.17(1)^\circ$, Z = 4, and R = 0.033 for 3122 independent reflections. H atoms have been located and refined. A detailed IR study of both NiK₂P₄O₁₂ · 5H₂O and CoK₂P₄O₁₂ · 5H₂O is reported and a tentative explanation for the dehydration and reorganization is proposed. © 1987 Academic Press, Inc.

1. Introduction

Dans le cadre d'une étude systématique des phosphates condensés mixtes de nickel-éléments monovalents nous avons déjà décrit l'existence du cyclotétraphosphate de nickel-dipotassium heptahydraté: NiK₂P₄O₁₂ · 7H₂O (1). La structure cristalline de ce sel montre l'existence de deux sortes de molécules d'eau:

-quatre molécules d'eau qui font partie des octaèdres de coordination des deux atomes de nickel cristallographiquement indépendants;

—trois molécules d'eau, peu liées, situées dans un canal de section (4×10) Å².

L'étude de la déshydratation de ce sel met en évidence l'existence d'un pentahydrate: NiK₂P₄O₁₂ · 5H₂O. La connaissance de sa structure est indispensable pour expliquer la réorganisation atomique lors de la déshydratation. Les difficultés de cristallisation de ce sel nous ont conduit à étudier ce type structural à l'aide du composé correspondant au cobalt dont l'isotypie a été démontrée par diffraction des rayons X et par spectrométrie IR.

A partir de l'arrangement atomique obtenu pour le pentahydrate nous proposons une explication du mode de déshydratation et de réorganisation, accompagnée d'une étude détaillée par spectrométrie IR des pentahydrates.

2. Deshydratation de NiK₂P₄O₁₂ \cdot 7H₂O

Dans le but de vérifier l'existence possible d'hydrates inférieurs de NiK₂P₄O₁₂ · 7H₂O nous avons procédé à une étude par ATG et ATD. Les résultats obtenus sont en accord avec l'existence d'un pentahydrate: NiK₂P₄O₁₂ · 5H₂O. L'étude par micro-ATD

FIG. 1. Courbe d'analyse thermique différentielle de $NiK_2P_4O_{12} \cdot 7H_2O$.

montre que la première perte commence à 60°C pour atteindre un maximum à 100°C (figure 1). Un traitement thermique à 60°C est effectué dans une étuve avec contrôle de la température au niveau de l'échantillon à l'aide d'un thermocouple chromel alumel. Ce traitement, maintenu pendant une dizaine d'heures, conduit au pentahydrate. L'impossibilité d'obtenir des monocristaux de NiK₂P₄O₁₂ · 5H₂O nous conduit à l'étude structurale de son isotype CoK₂P₄O₁₂ · 5H₂O préparé récemment dans notre laboratoire.

3. Préparation et analyse chimique de $CoK_2P_4O_{12} \cdot 5H_2O$

La préparation chimique est la même que celle décrite pour d'autres sels de ce type (2, 3). Elle se fait par neutralisation d'acide cyclotétraphosphorique par un mélange en quantités stoechiométriques de carbonates de cobalt et de potassium selon la réaction:

$$\begin{array}{r} H_4 P_4 O_{12} + CoCO_3 + K_2 CO_3 + 3H_2 O \rightarrow \\ CoK_2 P_4 O_{12} \cdot 5H_2 O + 2CO_2^{\uparrow} \end{array}$$

L'acide cyclotétraphosphorique est préparé par échange d'ions à partir d'une solution de Na₄P₄O₁₂ · 4H₂O (M/50). La solution obtenue est évaporée à la température ambiante. Au bout de quelques jours, des cristaux de teinte rose sont obtenus. L'analyse chimique des constituants de ce composé est faite par spectrométrie de flamme pour le potassium, absorptiométrie à la longueur d'onde de 430 et 570 nm respectivement pour le phosphore et le cobalt (4). Elle conduit au rapports expérimentaux P/ Co = 3,66(théo. = 4); P/K = 2,09 (théo. =2); K/Co = 1,73 (théo. = 2) proches des valeurs théoriques données entre parenthèses.

La perte au feu à 500°C montre que ce sel cristallise avec cinq molécules d'eau. La mesure de la densité est effectuée à la température ambiante, à l'aide d'un pycnomètre, le liquide utilisé étant le bromobenzène.

4. Détermination de la structure

L'étude du réseau réciproque des cristaux de CoK₂P₄O₁₂ · 5H₂O conduit sans ambiguité au groupe spatial monoclinique $P2_1/$ c. Les paramètres de la maille sont affinés à partir des 25 réflexions de la matrice d'orientation mesurées sur le diffractomètre automatique. Le cristal retenu pour la collecte de données a une forme tétragonale de dimensions: $0,10 \times 0,10 \times 0,13$ mm³. La correction de Lorentz-polarisation a été faite, mais en raison de la petite taille du cristal aucune correction d'absorption n'a été effectuée. Les caractéristiques de la maille élémentaire, d'enregistrement et de traitement des intensités sont regroupées dans le tableau I.

Les 3122 réflexions indépendantes retenues sur les 6850 réflexions mesurées conduisent après moyenne sur les deux raies équivalentes *hkl* et *hkl*, à un facteur de consistence interne de 0,024. Pour abaisser le facteur de confiance *R*,485 réflexions telles que $F_o < 4\sigma_F$ ont été éliminées pour les

TABLEAU I

 $Caractéristiques \ cristallographiques \ et conditions \ expérimentales \ utilisées \ pendant \ la \ collecte \ de \ données \ de \ CoK_2P_4O_{12} \cdot 5H_2O$

Caractéristiques cristallographiques	a = 12,955(2) Å b = 16,294(2) Å c = 7,432(2) Å $\beta = 92,17(1)^{\circ}$
	$P2_{1}/c$
Diffractomètre	Philips PW1100
Monochromateur	Graphite
Longueur d'onde (Å)	MoK_{α} (0,7107)
Type de balayage	ω
Vitesse de balayage (°/sec)	0,03
Temps de mesure du fond continu	
(sc)	de 10 à 84
Domaine de balavage (°)	$1, 2(\theta)$
Domaine de mesure (°)	3-35 (0)
Réflexions de réference	411; 411; 502
Nombre de reflexions mesurées	6850
μ (cm ⁻¹)	20,309
$D_x, D_m (\mathrm{Mg} \cdot \mathrm{m}^{-3})$	2,377; 2,212

derniers cycles d'affinement. Le rapport du nombre de réflexions sur le nombre de variables reste supérieur à 10. L'étude de la fonction de Patterson tridimensionnelle a permis de localiser les atomes de cobalt et de potassium. Dès lors des synthèses de Fourier ont mis en évidence les carrés des pics formés par les quatre atomes de phosphore du cycle P_4O_{12} , puis ensuite elles ont révélé la totalité de la structure, atomes d'hydrogène exceptés. Une série d'affinements par moindres carrés à matrice complète conduit à une valeur du facteur R inférieure à 5% sur l'ensemble des réflexions retenues. Des synthèses de Fourier-différence ont permis de localiser les atomes d'hydrogène. L'affinement des atomes d'hydrogène abaisse le facteur R à 0,033.

La chaîne des programmes SDP (5) a été utilisée. Les facteurs de diffusion atomique sont ceux des atomes neutres (6). Les paramètres des positions atomiques et les facteurs β_{eq} . ou β_{iso} sont consignés dans le tableau II, les facteurs de température anisotropes dans le tableau III.

5. Description de la structure

La répartition des anions cycliques $P_4O_{12}^{4-}$ dans la maille est mise en évidence par la projection de la structure sur le plan (**a**, **b**) (figure 2). Chaque maille renferme quatre anions cycliques reliés par les éléments de symétrie. La cohésion de ces anions est assurée par les polyèdres de coordination des cations associés. Les angles et distances caractéristiques de l'anion $P_4O_{12}^{4-}$ (tableau IV) sont proches de ceux habituellement recontrés dans les composés de ce type (7,

TABLEAU II

Coordonnées atomiques finales et coefficients d'agitation thermique (\mathring{A}^2)

Atomes	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$\beta_{cq.}(\sigma)$
Co(1)	0,0000(0)	0,0000(0)	0,0000(0)	1,20(2)
Co(2)	0,5000(0)	0,0000(0)	0,0000(0)	1,25(2)
K(1)	0,0693(1)	0,77369(8)	0,9763(2)	2,67(3)
K(2)	0,3939(1)	0,34310(8)	0,7722(2)	2,46(3)
P(1)	0,35962(9)	0,55092(7)	0,1414(2)	1,15(2)
P(2)	0,35518(9)	0,12286(7)	0,7380(2)	1,18(3)
P(3)	0,87280(8)	0,88095(7)	0,2698(2)	1,12(2)
P(4)	0,13347(9)	0,94323(7)	0,6521(2)	1,15(3)
O(L12)	0,3564(2)	0,4538(2)	0,0994(4)	1,49(8)
O(L14)	0,7495(2)	0,0656(2)	0,2672(4)	1,29(7)
O(E11)	0,6337(9)	0,4055(2)	0,0324(4)	1,86(9)
O(E12)	0,4394(2)	0,9322(2)	0,7866(4)	1,59(8)
O(L23)	0,7583(2)	0,6154(2)	0,6780(4)	1,49(8)
O(E21)	0,3649(3)	0,3024(2)	0,1283(5)	1,90(9)
O(E22)	0,5710(2)	0,6075(2)	0,6063(4)	1,51(8)
O(L34)	0,1258(2)	0,4606(2)	0,1034(4)	1,19(7)
O(E31)	0,1138(3)	0,3080(2)	0,1127(5)	1,61(8)
O(E32)	0,9452(2)	0,8923(2)	0,1201(4)	1,50(8)
O(E41)	0,9327(3)	0,0761(2)	0,1929(5)	1,65(8)
O(E42)	0,8812(3)	0,3974(2)	1,0189(4)	1,69(9)
O(W1)	0,1357(2)	-0,0038(2)	0,1663(4)	1,79(8)
O(W2)	0,3666(3)	0,9820(3)	0,1494(5)	2,3(1)
O(W3)	0,7825(4)	0,2154(3)	0,7523(6)	3,8(1)
O(W4)	0,1826(3)	0,1544(2)	0,2649(5)	2,3(1)
O(W5)	0,4172(4)	0,7589(3)	0,1108(8)	4,3(2)
				$\beta_{\rm iso.}(\sigma)$
H(11)	0,856(5)	0,546(4)	0,298(8)	3,0(1)
H(12)	0,877(5)	0,465(4)	0,250(8)	3,0(1)
H(21)	0,367(6)	0,958(5)	0,250(10)	5,0(2)
H(22)	0,322(6)	0,974(5)	0,118(10)	5,0(2)
H(31)	0,273(6)	0,711(5)	0,708(10)	5,0(2)
H(32)	0,772(6)	0,179(5)	0,649(11)	6,0(2)
H(41)	0,166(5)	0,302(4)	0,698(8)	3,0(1)
H(42)	0,166(6)	0,173(5)	0,358(10)	5,0(2)
H(51)	0,604(6)	0,266(5)	0,971(11)	6,0(2)
H(52)	0,443(7)	0,697(6)	0,553(12)	8,0(3)

TABLEAU III

COEFFICIENTS DE TEMPÉRATURES ANISOTROPES β_{ij} (×10³)^{*a*}

Atomes	β ₁₁	β_{22}	β ₃₃	β_{12}	β_{13}
	0.99(2)	1.39(3)	1.24(2)	-0.01(3)	0.33(2)
$C_0(2)$	1.06(2)	1.46(3)	1.23(2)	0,12(3)	0.01(2)
$\mathbf{K}(1)$	2.52(4)	2.14(4)	3.36(5)	0,14(4)	0,35(4)
$\mathbf{K}(2)$	2.63(4)	2.19(4)	2.61(4)	-0.88(4)	0.84(3)
P(1)	1.08(3)	1.26(4)	1,12(3)	-0.14(3)	0,11(3)
P(2)	1.09(3)	1.18(4)	1,26(3)	-0,06(3)	-0,01(3)
P(3)	1.06(3)	1.09(3)	1,22(3)	0,04(3)	0,21(3)
P(4)	1.11(3)	1.19(4)	1.15(3)	-0.03(3)	0,14(3)
O(L12)	1.5(1)	1,4(1)	1,6(1)	-0,1(1)	0,18(9)
O(L14)	1.05(9)	1.6(1)	1.3(1)	-0.2(1)	0,16(8)
O(E11)	2.4(1)	1.9(1)	1,3(1)	-0,2(1)	0,4(1)
O(E12)	1.3(1)	1,7(1)	1,7(1)	0,3(1)	-0,32(9)
O(L23)	1.10)	1,8(1)	1,5(1)	0,0(1)	0,00(9)
O(E21)	2,0(1)	1,4(1)	2,2(1)	0,1(1)	0,0(1)
O(E22)	1.3(1)	1.6(1)	1,6(1)	-0.1(1)	-0,32(9)
O(L34)	1,5(1)	1,0(1)	1,1(1)	-0,18(9)	0,00(9)
O(E31)	1.6(1)	1,4(1)	1,9(1)	-0,1(1)	0,1(1)
O(E32)	1.3(1)	1.6(1)	1,6(1)	-0,1(1)	0,64(9)
O(E41)	1.5(1)	1.7(1)	1,9(1)	0,1(1)	0,72(9)
O(E42)	1,7(1)	1,8(1)	1,6(1)	0,1(1)	0,1(1)
O(W1)	1,5(1)	2,1(1)	1,8(1)	0,0(1)	-0,02(9)
O(W2)	1,5(1)	3,7(2)	1,8(1)	-0,3(1)	0,2(1)
O(W3)	3,1(2)	4,4(2)	3,9(2)	-0,6(2)	1,0(2)
O(W4)	2,8(1)	2,2(1)	1,9(1)	-0,1(1)	0,3(1)
O(W5)	3,3(2)	3,4(2)	6,2(3)	-1,0(2)	0,7(2)

^a La formule utilisée pour le calcul est: $T = \beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl$.

8). Les atomes de potassium K(1) et K(2) possèdent respectivement les coordinances
6 et 8 dans une sphère de coordination de rayon 3,5 Å. Les distances K-O (tableau V) sont comprises:

—entre 2,738 et 2,861 Å pour les polyèdres $K(1)O_6$,

—entre 2,623 et 3,081 Å pour les polyèdres $K(2)O_8$.

Les atomes de cobalt se trouvent dans un environnement octaédrique légèrement déformé, les distances Co–O (tableau V) varient de 2,063 à 2,111 Å. La coordinence est assurée par deux molécules d'eau et quatre atomes d'oxygène appartenant à deux groupements P_4O_{12} , de sorte que le cobalt participe à deux cycles de chélation situés en position trans et renfermant chacun six atomes [Co, O(E12), P(1), O(L12), P(2), O(E22)]. Chaque groupement P_4O_{12} participe aux sphères de coordination de deux atomes de cobalt. L'ensemble forme un enchaînement infini, parallèle à l'axe [100], dont la période est constitué par l'anion complexe $[Co(H_2O)_2P_4O_{12}]^{2-}$.

Les liaisons hydrogène sont décrites dans le tableau VI et représentées sur la figure 3. On remarque que les angles des liaisons $O(w)-H \cdot \cdot \cdot O$ varient entre 179 et 129°.

6. Discussion sur la cinétique de déshydratation-réorganisation de NiK₂P₄O₁₂ · 7H₂O

Un retour à l'examen de la structure de l'heptahydrate est nécessaire pour comprendre le mécanisme de passage au pentahydrate.

La maille triclinique de l'heptahydrate comporte un anion $[Ni(H_2O)_2 (P_4O_{12})_2]^{6-}$ à l'origine et un cation [Ni(H₂O)₆]²⁺ au centre. La distance entre les deux atomes de nickel Ni(1)-Ni(2) est de 7.646 Å. Lors de la déshydratation quatre molécules d'eau de Ni(2) sont substituées par quatre atomes d'oxygène appartenant à deux cycles $P_4O_{12}^{4-}$ coordonnés à deux atomes Ni(1) situés aux sommets opposés de la maille triclinique, ce qui donne lieu à l'enchaînement infini décrit précedemment (cf. parag. 5). On peut ainsi identifier la direction [111] de la maille triclinique à la direction [100] de la maille monoclinique. La distance entre deux atomes de nickel de l'enchaînement devient alors égale à 6,92 Å. Ainsi le passage de l'heptahydrate au pentahydrate à l'état solide, à une température aussi basse (60°C), s'explique aisément par le fait qu'il est accompagné par une faible réorganisation de la maille. En outre le remplacement de molécules d'eau par des groupements P₄O₁₂ donnant lieu à deux cycles de chélation est favorable du point de vue entropique (effet chélate). On remarque aussi que le nombre des molécules d'eau d'hydratation est le même pour l'heptahydrate et le pentahydrate, à savoir trois par unité formulaire.

			• • • •			.,		12
Té	traèdre P(1)O ₄		Tétraèdre P(2)O ₄				
O(E11)	O(E12)	O(L12)	O(L14)	P(2)	O(E21)	O(E22)	O(L12)	O(L23)
1,480(3)	118,7(1)	107,7(1)	112,2(1)	O(E21)	1,473(3)	120,1(2)	106,4(1)	111,9(2)
2,557(3)	1,491(2)	109,4(1)	105,3(1)	O(E22)	2,571(4)	1,494(2)	110,0(1)	104,6(1)
2,499(4)	2,536(4)	1,614(3)	102,2(1)	O(L12)	2,477(4)	2,552(3)	1,620(3)	102,6(1)
2,566(3)	2,465(3)	2,508(3)	<u>1,609(2)</u>	O(L23)	2,567(4)	2,468(3)	2,530(3)	1,623(2)
Té	traèdre P(3)O ₄			Té	traèdre P(4	I)O₄	
O(E31)	O(E32)	O(L23)	O(L34)	P(4)	O(E41)	O(E42)	O(L14)	O(L34)
1,481(3)	118,4(2)	111,4(1)	107,7(1)	O(E41)	1,496(2)	119,8(2)	104,6(1)	110,2(1)
2,555(3)	1,494(2)	105,9(1)	110,2(1)	O(E42)	2,574(3)	1,479(3)	111,2(1)	107,1(1)
2,555(3)	2,479(3)	1,610(2)	102,0(1)	O(L14)	2,463(3)	2,556(3)	1,616(2)	102,7(1)
2,492(3)	2,540(3)	2,498(3)	1,603(2)	O(L34)	2,549(3)	2,487(3)	2,520(3)	1,611(3)
P(1) - P(2)	2,922(1)	P(1)-1	P(2) - P(3)	90,21(3)	P(1)-O(L12) - P(2)	129,3()	1)
P(2) - P(3)	2,953(1)	P(2)-I	P(3) - P(4)	89,39(3)	P(2)-O(L23) - P(3)	131.90	2)
P(3)-P(4)	2,925(1)	P(3)J	P(4) - P(1)	90,50(3)	P(3)-O(L34) - P(4)	131.00	2)
P(4)–P(1)	2,935(1)	P(4)-1	P(1) - P(2)	89,77(3)	P(4)-O(L14)P(1)	131,1(Í)
	Té O(E11) <u>1,480(3)</u> 2,557(3) 2,499(4) 2,566(3) Té O(E31) <u>1,481(3)</u> 2,555(3) 2,555(3) 2,555(3) 2,555(3) 2,492(3) P(1)-P(2) P(2)-P(3) P(3)-P(4) P(4)-P(1)	Tétraèdre P(1) $O(E11)$ $O(E12)$ $1,480(3)$ $118,7(1)$ $2,557(3)$ $1,491(2)$ $2,499(4)$ $2,536(4)$ $2,566(3)$ $2,465(3)$ Tétraèdre P(3) $O(E31)$ $O(E32)$ $1,481(3)$ $118,4(2)$ $2,555(3)$ $2,479(3)$ $2,492(3)$ $2,540(3)$ $P(1)-P(2)$ $2,922(1)$ $P(2)-P(3)$ $2,953(1)$ $P(3)-P(4)$ $2,925(1)$ $P(4)-P(1)$ $2,935(1)$	Tétraèdre P(1)O ₄ O(E11) O(E12) O(L12) $1,480(3)$ 118,7(1) 107,7(1) $2,557(3)$ $1,491(2)$ 109,4(1) $2,557(3)$ $1,491(2)$ 109,4(1) $2,556(3)$ $2,536(4)$ $1,614(3)$ $2,566(3)$ $2,465(3)$ $2,508(3)$ Tétraèdre P(3)O ₄ O(E31) O(E32) O(L23) $1,481(3)$ 118,4(2) 111,4(1) $2,555(3)$ $2,479(3)$ $1,610(2)$ $2,492(3)$ $2,540(3)$ $2,498(3)$ $P(1)-P(2)$ $2,922(1)$ $P(1)-I$ $P(1)-P(2)$ $2,922(1)$ $P(1)-I$ $P(2)-I$ $P(3)-I$ $P(3)-P(4)$ $2,925(1)$ $P(3)-I$ $P(4)-I$	Tétraèdre P(1)O ₄ O(E11) O(E12) O(L12) O(L14) $1,480(3)$ 118,7(1) 107,7(1) 112,2(1) $2,557(3)$ $1,491(2)$ 109,4(1) 105,3(1) $2,557(3)$ $1,491(2)$ 109,4(1) 105,3(1) $2,499(4)$ $2,536(4)$ $1,614(3)$ 102,2(1) $2,566(3)$ $2,465(3)$ $2,508(3)$ $1,609(2)$ Tétraèdre P(3)O ₄ O(E31) O(E32) O(L23) O(L34) $1,481(3)$ 118,4(2) 111,4(1) 107,7(1) $2,555(3)$ $1,494(2)$ 105,9(1) 110,2(1) $2,555(3)$ $2,479(3)$ $1,610(2)$ 102,0(1) $2,555(3)$ $2,479(3)$ $1,610(2)$ 102,0(1) $2,492(3)$ $2,540(3)$ $2,498(3)$ $1,603(2)$ P(1)-P(2) $2,922(1)$ P(1)-P(2)-P(3) P(2)-P(3)-P(4) P(2)-P(3) $2,953(1)$ P(2)-P(3)-P(4) P(4)-P(1) P(4)-P(1) $2,935(1)$ P(4)-P(1)-P(2)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tétraèdre P(1)O ₄ Té O(E11) O(E12) O(L12) O(L14) P(2) O(E21) $1,480(3)$ 118,7(1) 107,7(1) 112,2(1) O(E21) $1,473(3)$ $2,557(3)$ $1,491(2)$ 109,4(1) 105,3(1) O(E22) $2,571(4)$ $2,499(4)$ $2,536(4)$ $1,614(3)$ 102,2(1) O(L12) $2,477(4)$ $2,566(3)$ $2,465(3)$ $2,508(3)$ $1,609(2)$ O(L23) $2,567(4)$ Tétraèdre P(3)O ₄ Té Té O(E31) O(E32) O(L23) O(L34) P(4) O(E41) $1,481(3)$ 118,4(2) 111,4(1) 107,7(1) O(E41) $1,496(2)$ $2,555(3)$ $1,494(2)$ 105,9(1) 110,2(1) O(E42) $2,574(3)$ $2,555(3)$ $2,479(3)$ $1,610(2)$ 102,0(1) O(L14) $2,463(3)$ $2,492(3)$ $2,540(3)$ $2,498(3)$ $1,603(2)$ O(L34) $2,549(3)$ P(1)-P(2) $2,922(1)$ P(1)-P(2)-P(3) <t< td=""><td>Tétraèdre P(1)O₄ Tétraèdre P(2) O(E11) O(E12) O(L12) O(L14) P(2) O(E21) O(E22) $1,480(3)$ 118,7(1) 107,7(1) 112,2(1) O(E21) $1,473(3)$ 120,1(2) $2,557(3)$ $1,491(2)$ 109,4(1) 105,3(1) O(E22) $2,571(4)$ $1,494(2)$ $2,499(4)$ $2,536(4)$ $1,614(3)$ 102,2(1) O(L12) $2,477(4)$ $2,552(3)$ $2,566(3)$ $2,465(3)$ $2,508(3)$ $1,609(2)$ O(L23) $2,567(4)$ $2,468(3)$ Tétraèdre P(3)O₄ Tétraèdre P(3)O₄ Tétraèdre P(4) O(E41) O(E42) $1,481(3)$ 118,4(2) 111,4(1) 107,7(1) O(E41) $1,496(2)$ 119,8(2) $2,555(3)$ $1,494(2)$ 105,9(1) 110,2(1) O(E41) $1,496(2)$ 119,8(2) $2,555(3)$ $2,479(3)$ $1,610(2)$ 102,0(1) O(L14) $2,463(3)$ $2,556(3)$ $2,492(3)$ $2,540(3)$ $2,498(3)$ $1,603(2)$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></t<>	Tétraèdre P(1)O ₄ Tétraèdre P(2) O(E11) O(E12) O(L12) O(L14) P(2) O(E21) O(E22) $1,480(3)$ 118,7(1) 107,7(1) 112,2(1) O(E21) $1,473(3)$ 120,1(2) $2,557(3)$ $1,491(2)$ 109,4(1) 105,3(1) O(E22) $2,571(4)$ $1,494(2)$ $2,499(4)$ $2,536(4)$ $1,614(3)$ 102,2(1) O(L12) $2,477(4)$ $2,552(3)$ $2,566(3)$ $2,465(3)$ $2,508(3)$ $1,609(2)$ O(L23) $2,567(4)$ $2,468(3)$ Tétraèdre P(3)O ₄ Tétraèdre P(3)O ₄ Tétraèdre P(4) O(E41) O(E42) $1,481(3)$ 118,4(2) 111,4(1) 107,7(1) O(E41) $1,496(2)$ 119,8(2) $2,555(3)$ $1,494(2)$ 105,9(1) 110,2(1) O(E41) $1,496(2)$ 119,8(2) $2,555(3)$ $2,479(3)$ $1,610(2)$ 102,0(1) O(L14) $2,463(3)$ $2,556(3)$ $2,492(3)$ $2,540(3)$ $2,498(3)$ $1,603(2)$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLEAU IV Principales distances interatomiques (Å) et angles des liaisons (°) dans un cycle $P_4O_{12}^a$

^{*a*} Les distances P–O sont soulignées, les angles O–P–O sont indiqués dans les triangles supérieurs, les distances O–O dans les triangles inférieurs. Sont aussi donnés dans ce tableau: Les distances P–P et les angles P–P–P et P–O–P.

FIG. 2. Projection de la structure de $CoK_2P_4O_{12} \cdot 5H_2O$ sur le plan (a, b).

TABLEAU V

Octaèdre C	o(1)O ₆	Polyèdre K	K(1)O ₆
$2 \times Co(1) - O(E32)$	2,105(2)	K(1)-O'(E31)	2,777(3)
$2 \times Co(1) - O(E41)$	2,109(2)	K(1)-O(E32)	2,755(3)
$2 \times Co(1) - O'(W1)$	2,111(2)	K(1)-O(E41)	2,752(3)
$2 \times O(E32) - O(E41)$	2,908(3) et 3,049(4)	K(1)-O(E42)	2,861(3)
$2 \times O(E32) - O'(W1)$	2,959(4) et 3,00(4)	K(1)-O(W3)	2,738(4)
$2 \times O(E41) - O'(W1)$	2,947(4) et 3,020(4)	K(1)-O(W3)	2,779(4)
$2 \times O(E32)-Co(1)-O(E41)$	92,71(9) et 87,29(9)	Polyèdre K	$(2)O_8$
$2 \times O(E32) - Co(1) - O'(W1)$	90,82(11) et 89,18(11)	K(2) - O(E12)	2,651(3)
$2 \times O(E41) - Co(1) - O'(W1)$	91,39(10) et 88,61(10)	K(2)-O(E21)	2,768(3)
Octaèdre C	o(2)O ₆	K(2)-O(E21)	2,623(3)
$2 \times Co(2) - O(E12)$	2,063(2)	K(2) - O(L12)	3,081(3)
$2 \times Co(2) - O'(E22)$	2,111(2)	K(2)-O'(E22)	2,977(3)
$2 \times Co(2) - O(W2)$	2,110(3)	K(2)-O(W2)	3,009(4)
$2 \times O(E12) - O'(E22)$	2,943(3) et 2,969(4)	K(2)-O(W4)	2,736(3)
$2 \times O(E12) - O(W2)$	2,899(4) et 3,003(4)	K(2)-O'(W5)	3,056(5)
$2 \times O'(E22) - O(W2)$	2,927(4) et 3,051(4)		
$2 \times O(E12) - Co(2) - O'(E22)$	89,50(9) et 90,50(9)		
$2 \times O(E12)-Co(2)-O(W2)$	92,01(11) et 87,99(11)		
$2 \times O'(E22) - Co(2) - O(W2)$	92,40(11) et 87,60(11)		

PRINCIPALES DISTANCES INTERATOMIQUES (Å) ET ANGLES DES LIAISONS (°) DANS LES POLYÈDRES DE COORDINATION DU COBALT ET DES IONS POTASSIUM

7. Spectrométrie de vibration IR des pentahydrates $M^{II}K_2P_4O_{12} \cdot 5H_2O$ ($M^{II} = Ni$, Co)

Les spectres d'absorption IR de la figure 4 ont été enregistrés au moyen d'un spectromètre "Beckman 4250" par la technique des pastilles en utilisant la paraffine comme dispersant et des supports de KRS5 (solution solide de bromo-iodure de tallium). Le spectre IR obtenu sur l'échantillon de NiK₂P₄O₁₂ · 7H₂O partiellement déshydraté est comparable au spectre IR de CoK₂P₄O₁₂ · 5H₂O (figure 4).

-Les bandes de valence des molécules d'eau sont moins intenses dans le produit

TA	BL	.EA	U	٧I
----	----	-----	---	----

Caractéristiques géométriques des liaisons hydrogène des molécules d'eau dans $M^{II}K_2P_4O_{12} \cdot 5H_2O$ ($M^{II} = Ni$, Co)

O(W)–H	НО	O(W)–O	O(W)-H O	HO(W)-H
0,85(5)	1,90(5)	2,742(5)	172(5)	112(5)
0,82(5)	2,04(5)	2,856(4)	168(5)	
0,84(6)	1,83(6)	2,674(4)	179(6)	102(6)
0,62(6)	2,48(6)	3,007(4)	143(7)	
0,80(6)	2,08(7)	2,847(6)	161(7)	98(6)
0,97(7)	2,15(7)	2,862(5)	129(5)	
0,89(5)	2,00(6)	2,833(4)	164(5)	96(5)
0,80(6)	2,06(6)	2,874(4)	166(6)	
0,77(7)	2,35(7)	2,947(5)	135(7)	99 (7)
0,90(8)	2,24(8)	2,953(5)	136(6)	
	O(W)-H 0,85(5) 0,82(5) 0,84(6) 0,62(6) 0,80(6) 0,97(7) 0,89(5) 0,80(6) 0,77(7) 0,90(8)	O(W)-H H H O 0,85(5) 1,90(5) 0,82(5) 2,04(5) 0,84(6) 1,83(6) 0,62(6) 2,48(6) 0,80(6) 2,08(7) 0,97(7) 2,15(7) 0,89(5) 2,00(6) 0,80(6) 2,06(6) 0,77(7) 2,35(7) 0,90(8) 2,24(8)	O(W)-H H O(W)-O 0,85(5) 1,90(5) 2,742(5) 0,82(5) 2,04(5) 2,856(4) 0,84(6) 1,83(6) 2,674(4) 0,62(6) 2,48(6) 3,007(4) 0,80(6) 2,08(7) 2,847(6) 0,97(7) 2,15(7) 2,862(5) 0,89(5) 2,00(6) 2,833(4) 0,80(6) 2,06(6) 2,874(4) 0,77(7) 2,35(7) 2,947(5) 0,90(8) 2,24(8) 2,953(5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

FIG. 3. Projection de l'arrangement des molécules d'eau et liaisons hydrogène dans $CoK_2P_4O_{12} \cdot 5H_2O$.

de déshydratation que dans le sel de cobalt. Les bandes de déformation de ces molécules d'eau sont observées aux mêmes fréquences.

—Les bandes de valence et de déformation de l'anion cyclique $P_4O_{12}^{4-}$ sont comparables.

Dans les cyclotétraphosphates on distin-

gue quatre domaines distincts pour les vibrations de valence des cycles P_4O_{12} (9, 10): —entre 1350 et 1180 cm⁻¹: vibrations antisymétriques ν_{as} OPO⁻;

—entre 1180 et 1060 cm⁻¹: vibrations symétriques $\nu_s OPO^-$;

—entre 1060 et 960 cm⁻¹: vibrations antisymétriques ν_{as} POP;

FIG. 4. Spectres IR des pentahydrates: (a) NiK₂P₄O₁₂ · 5H₂O, (b) CoK₂P₄O₁₂ · 5H₂O.

—entre 850 et 660 cm⁻¹: vibrations symétriques ν_s POP.

Les modes de déformation du cycle P_4O_{12} sont observés en dessous de 660 cm⁻¹ (11): entre 600 et 500 cm⁻¹, déformation des groupements OPO⁻ et, en dessous de 480 cm⁻¹, déformation des groupements POP avec éventuellement les translations des cations.

Notre étude se limite au domaine caractéristique des vibrations de valence du cycle $P_4O_{12}^{4-}$ des pentahydrates NiK₂P₄O₁₂ · 5H₂O et CoK₂P₄O₁₂ · 5H₂O. Dans les spectres IR (cf. figure 4) les bandes d'absorption observées peuvent être décrites comme suit pour les vibrations internes de l'anion P₄O₁₂⁴⁻:

—une bande à trois composantes pour les vibrations $\nu_{as}OPO^-$; —deux bandes dont une dédoublée pour les vibrations v_s OPO⁻;

—une bande large centrée autour de 980 cm⁻¹ pour les vibrations ν_{as} POP;

—trois bandes et un épaulement pour les vibrations ν_s POP;

—une bande forte à 540 cm⁻¹ présentant deux épaulements pour les vibrations de déformation du cycle $P_4O_{12}^{4-}$.

L'analyse théorique des groupes prévoit deux modes du type A_{μ} actifs en IR et deux modes du type A_{g} actifs en Raman pour la symétrie locale C_{i} , et quatre modes du type A actifs en IR et Raman pour la symétrie locale C_{1} , dans chacun des quatre domaines de vibrations de valence de l'anion cyclique $P_4O_{12}^{4-}$ (tableau VII). Le profil et la position des bandes observées dans le domaine caractéristique ν_{s} POP indiquent bien

			• ••				· •	•	
		P₄O ₁₂	$: C_i$	P₄C	$b_{12}^{4-}:S$	4	P₄O	$O_{12}^{4-}:C$	7
Mouvement	IR	Ra	Mode	Mode	IR	Ra	Mode	IR	RA
$\nu_{as}OPO^-$	+	-	<i>A</i> ₄ ←	A	_	+	$\rightarrow A$	+	+
	+	-	$A_{\mu} \leftarrow$	——В	+	+	—→A	+	+
	_	+	$A_g \leftarrow$			·	A	+	+
	-	+	A _g	E	+	+	\rightarrow_A	+	+
ν _s OPO⁻	+	-	<i>A</i> _{<i>u</i>} ←	A	-	+	→A	+	+
	+	_	$A_{u} \leftarrow$	B	+	+	→A	+	+
	-	+	A_{g}	E			A	+	+
	-	+	A ₈		Ŧ	T •	\rightarrow_A	+	+
$\nu_{\rm as} \rm POP$	+	_	<i>A_u</i> ←−−−	——A	_	+	$\longrightarrow A$	+	+
	+	—	<i>A_u</i> ←−−	— <i>В</i>	+	+	—→A	+	+
	-	+	$A_g \leftarrow$	F			A	+	+
	-	+	A _s	E	т	+	\searrow_A	+	+
ν _s POP	+	_	$A_u \leftarrow \cdots$	A	-	+	$\longrightarrow A$	+	+
	+	_	$A_u \leftarrow$	В	+	+	→A	+	+
	-	+	A_g	F		~	A	+	+
	-	+	Ag	E	Ŧ	+	A	+	+

TABLEAU VII

Schéma de corrélation comparatif des modes vibratoires de valence du cycle $P_4O_{12}^{4-}$ de symétrie locale S_4 , C_i et C_1^a

 a +: actif; -: inactif.

Tune de	C M	Fréquence SrK ₂ P ₄	guences cal. pour $SrK_2P_4O_{12}$ (12) GS NiK PO $_2SHO$ GrK PO		G.S. NiK-P.O., SH-O		CaKRO	54 0
mouvement	S_4	IR (cm ⁻¹)	Ra (cm ⁻¹)	C_1	IR (cm ⁻¹)	51120	$IR (cm^{-1})$	51120
$\nu_{\rm H_{2}O}$					3590	1 11 001 10000	3600	
-					3550		3550	
					3470		3480	
					3400		3410	
							3395	
					3320			
							3305	
					3300			
					3100		3085	
διμο					1725		1730	
					1670		1675	
					1655		1655	
					1610		1610	
$\nu_{\rm ex} OPO^-$	А	_	1260	Α	1260	ép	1260	ép
a.a	В	1290	_	Α	1295	ŤF	1290	ŤF
	Ε	1272	—	A + A	1275	m	1265	m
v.OPO-	A	_	1180	А	1155	m	1155	m
	B	1076	_	A	1075	ép	1075	ép
	Ε	1112	_	A + A	1115-1105	ŤF	1105-1110	ŤF
v POP	A			A	1020	én	1015	én
Past OI	B	988	_	A	980	TF	985	TF
	Ē	1000		A + A	990	TF	995	TF
ν POP	A	_	680	A	690	tf	695	tf
P _S I OI	R	810		4	815	F	810	F
	F F	719	_	4 ± 4	718-710	F	715700	F
	L	/17	—		/10-/10	1	/15-/00	1

TABLEAU VI

Fréquences observées pour $M^{II}K_{2}P_{4}O_{1}$, \cdot 5H₂O (M^{II} = Ni, Co)^a

^a TF: trés fort; F: fort; m: moyen; tf: très faible; f: faible; ép: épaulement.

que le cycle est de symétrie C_1 . Une comparaison par rapport aux fréquences calculées (12) dans le cas de la symétrie locale S_4 du cycle $P_4O_{12}^{4-}$ dans $SrK_2P_4O_{12}$ (13, 14) permet de faire les attributions des fréquences reportées dans le tableau VIII. On constate que:

—les modes de symétrie A pour le cycle isolé de symétrie S_4 , inactifs en IR, deviennent actifs pour la symétrie C_1 . On leurs attribue alors les bandes nouvelles apparues, dans les spectres des pentahydrates étudiés, aux fréquences 1260, 1155, 690 cm⁻¹ respectivement pour les vibrations de valence $\nu_{as}OPO^-$, ν_sOPO^- , et ν_sPOP .

—les modes doublement dégénerés de classe *E* sont dédoublés pour la configuration C_1 du cycle $P_4O_{12}^{4-}$; ils conduisent aux doublets (1115–1105 cm⁻¹) pour ν_s OPO⁻ et (718–710 cm⁻¹) pour ν_s POP. La séparation est moins bonne pour les vibrations ν_{as} POP car on n'observe qu'une bande large centrée autour de 980 cm⁻¹.

8. Conclusion

Ce travail montre que la déshydratation ménagée de $NiK_2P_4O_{12} \cdot 7H_2O$ conduit à

l'obtention d'un hydrate inférieur NiK₂P₄O₁₂ · 5H₂O isotype de CoK₂P₄O₁₂ · 5H₂O. Lors de la réorganisation de la structure de l'heptahydrate les deux atomes de nickel, differamment coordonnés, deviennent équivalents et il apparait un enchaînement infini de période $[Ni(H_2O)_2P_4O_{12}]^{2+}$. Des investigations par spectrométrie de vibration IR permettent d'attribuer les fréquences des bandes de valence du cycle $P_4O_{12}^{4-}$.

Références

- 1. A. JOUINI, M. DABBABI, ET A. DURIF, J. Solid State Chem. 60, 6 (1985).
- 2. A. JOUINI ET A. DURIF, C.R. Acad. Sci. Paris Sér. II 297, 573 (1983).
- 3. A. JOUINI ET M. DABBABI, C.R. Acad. Sci. Paris Sér. II 301, 1347 (1985).

- G. CHARLOT, "Chimie analytique quantitative," Tome II, pp. 484, 399, Masson, Paris (1974).
- 5. Enraf-Nonius Structure Determination Package, Enraf-Nonius (1980).
- International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham, UK (1974).
- 7. D. A. KOSLER ET A. J. WAGNER, J. Chem. Soc. A, 435 (1970).
- 8. M. T. AVERBUCH-POUCHOT ET A. DURIF, J. Solid State Chem. 60, 13 (1985).
- 9. D. E. C. CORBRIDGE ET E. J. LOVE, J. Chem. Soc., 493 (1954).
- E. STEGER ET A. SIMON, Z. Anorg. Allg. Chem. 291, 76 (1957).
- V. A. MADII, YU. I. KRASILOV, ET V. A. KIZEL, Inorg. Mater. 14(11), 1605 (1978).
- KH. KH. MULGLAGALIEV, A. N. LAZAREV, ET A. P. MIRGORODSKÜ, Izv. Akad. Nauk SSSR, Neorg. Mater. 10(4), 563 (1974).
- A. DURIF, C. MARTIN, I. TORDJMAN, ET D. TRAN-QUI, Bull. Soc. Fr. Minéral. Cristallogr. 89, 439 (1966).
- 14. A. DURIF, Rev. Chim. Minér. 6, 106 (1969).